8 research outputs found

    Laminar Burning Characteristics of Two Rice-Husk-Derived Biofuels

    No full text
    Biomass-derived fuels are emerging alternatives to fossil fuels because of their renewability and better carbon balance. Fuel researchers from Zhejiang University have developed and improved a catalytic method of converting rice husk to biofuels mainly composed of ethanol, ethyl acetate, and acetone. Optimization of the catalytic production process so that the final fuel has good combustion characteristics is something that requires detailed investigation. This study evaluates the laminar burning features of two fuels produced by the catalytic reaction. These two fuels are ETEAAC211 and ETEAAC121 (ETEAAC211, 50 vol % ethanol, 25 vol % ethyl acetate, and 25 vol % acetone; ETEAAC121, 25 vol % ethanol, 50 vol % ethyl acetate, and 25 vol % acetone). The experiment was conducted in outward propagating spherical flames at T0 of 358 K, P0 of 0.1 MPa, and equivalence ratios (ϕ) of 0.7–1.4. Moreover, the flame intrinsic hydrodynamic and thermal diffusion instabilities are assessed and discussed. It was noticed that the peak laminar burning velocity of the fuels occurred at ϕ of 1.1. The hydrodynamic instability reached its peak at ϕ of 1.1 as a result of the thin flame thickness and the high density ratio of burned/unburned mixtures. The Markstein length decreased with the equivalence ratio. However, the Markstein length decreased below zero at ϕ of 1.4 for ethyl acetate and ETEAAC121, showing the increased thermal diffusion instability as the equivalence ratio increases

    Si-Wu-Tang Alleviates Nonalcoholic Fatty Liver Disease via Blocking TLR4-JNK and Caspase-8-GSDMD Signaling Pathways

    No full text
    Background. Nonalcoholic fatty liver disease (NAFLD) has high global prevalence; however, the treatments of NAFLD are limited due to lack of approved drugs. Methods. Mice were randomly assigned into three groups: Control group, NAFLD group, NAFLD plus Si-Wu-Tang group. A NAFLD mice model was established by feeding with a methionine- and choline-deficient (MCD) diet for four weeks. Si-Wu-Tang was given orally by gastric gavage at the beginning of 3rd week, and it lasted for two weeks. The treatment effects of Si-Wu-Tang were confirmed by examining the change of body weight, serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels, Oil Red O staining, and hematoxylin and eosin (H&E) staining of the liver samples and accompanied by steatosis grade scores. The expression and activation of the possible signaling proteins involved in the pathogenesis of NAFLD were determined by western blotting. Results. Mice fed with four weeks of MCD diet displayed elevated serum levels of ALT and AST, while there was decreased body weight. The hepatic Oil Red O staining and H&E staining showed severe liver steatosis with high steatosis grade scores. All these can be improved by treating with Si-Wu-Tang for two weeks. Mechanistically, the increased hepatic TLR4 expression and its downstream JNK phosphorylation induced by MCD diet were suppressed by Si-Wu-Tang. Moreover, the upregulations of Caspase-8, gasdermin D (GSDMD), and cleaved-GSDMD in liver mediated by MCD diet were all inhibited by Si-Wu-Tang. Conclusions. Treatment with Si-Wu-Tang improves MCD diet-induced NAFLD in part via blocking TLR4-JNK and Caspase-8-GSDMD signaling pathways, suggesting that Si-Wu-Tang has potential for clinical application in treating NAFLD
    corecore